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We investigate a very simple model describing the evolution of protein-protein interaction networks via
duplication and divergence. The model exhibits a remarkably rich behavior depending on a single parameter,
the probability to retain a duplicated link during divergence. When this parameter is large, the network growth
is not self-averaging and an average node degree increases algebraically. The lack of self-averaging results in
a great diversity of networks grown out of the same initial condition. When less than a half of links areson
averaged preserved after divergence, the growth is self-averaging, the average degree increases very slowly or
tends to a constant, and a degree distribution has a power-law tail. The predicted degree distributions are in a
very good agreement with the distributions observed in real protein networks.

DOI: 10.1103/PhysRevE.71.061911 PACS numberssd: 87.16.Yc, 89.75.Hc, 02.50.Cw, 05.50.1q

I. INTRODUCTION

A single- and multi gene duplication plays a crucial role
in evolution f1–4g. On the proteomics level, the gene dupli-
cation leads to a creation of new proteins that are initially
identical to the original ones. In a course of subsequent evo-
lution, the majority of these new proteins are lost as redun-
dant, while some of them survive by diverging, i.e., quickly
losing old and possibly slowly acquiring new functions.

The protein-protein interaction network is commonly de-
fined as an evolving graph with nodes and links correspond-
ing to proteins and their interactions. Thus a successful
single-gene duplication event results in a creation of a new
node which is initially linked to all the neighbors of the
original node. Later, some links between each of the dupli-
cates and their neighbors disappearsFig. 1d. Such a network
evolution process is called duplication and divergencef4,5g.
Duplication and divergence is usually considered as the key
growth mechanism for protein-protein networks, and it also
plays a role in creation of new nodes and links in the world
wide web, growth of various networks of human contacts by
introduction of close acquaintances of existing members, and
evolution of many other nonbiological networks.

Does the evolution dominated by duplication and diver-
gence define the structure and other properties of a network?
So far, most of the attention has been attracted to the study of
the degree distributionnk defined as the fraction of nodes
with k links. Wagnerf5g has provided a numerical evidence
that duplication-divergence evolution does not noticeably al-
ter the initial power-law degree distribution, provided that
the evolution is initiated with a fairly large network. In a
somewhat idealized case of the completely asymmetric di-
vergencef5,6g when links are removed only from the dupli-

cated nodesas in Fig. 1d, it was foundf7–10g that the emerg-
ing degree distribution has a power-law tail:nk,k−g for k
@1. Yet apart from the shape of the degree distribution, a
number of other perhaps even more fundamental properties
of duplication-divergence networks remain unclear.

s1d How well does the model describe its natural proto-
type, the protein-protein networks ?

s2d Is the total number of links a self-averaging quantity ?
s3d How does the average total number of links depend

on the network sizeN ?
s4d Does the degree distribution scale linearly withN ?

A nontrivial answer to any of these questions would be more
important than details of the tail of the degree distribution.

Here we seek answers to above questions and we also
look again at the degree distribution of the duplication-
divergence networks. We examine a simple scenario of to-
tally asymmetric divergence, where the evolution is charac-
terized by a single parameter, the link retention probability
s. It turns out that even such an idealized model well de-
scribes the degree distribution found in the biological
protein-protein networks. We find that depending ons, the
behavior of the system is extremely diverse: When more than
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FIG. 1. sColor onlined A sketch of duplication and divergence
event. Links between the duplicated vertex and vertices 3 and 4
disappeared as a result of divergence.
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a half of links are son averaged preserved, the network
growth is non-self-averaging, the average degree diverges
with the network size, and while a degree distribution has a
scaling form, it does not resemble any power law. In a com-
plimentary case of smalls the growth is self-averaging, the
average degree tends to a constant, and a degree distribution
approaches a scaling power-law form.

In the next section we formally define the model and com-
pare the simulated degree distribution to the observed ones.
The properties of the model are first analyzed in the tractable
s=1 and s→ +0 limits sSec. IIId and then in the general
case 0,s,1 sSec. IVd. Section V gives conclusions.

II. DUPLICATION AND DIVERGENCE

A number of the duplication-divergence models describ-
ing the evolution of protein interaction networks have been
recently investigated. Asymmetric models assume that rep-
lica proteins carry some but generally not all of the interac-
tion links of the target proteins from which they sprouted
f7–9g, while in symmetric models both replica and target
proteins can lose the interaction linksf11,12g. Some models
also take into account the appearance of interactions
f7,8,13–15g between new proteins and already existing ones,
or specifically between the replica and the target proteins
f12g. Despite their complexity, many of these models leave
aside certain subtle details of biological evolution underlying
actual duplication and divergence. Yet these models are usu-
ally analytically intractable and are not fully understood.
Furthermore, the comparison with available data is ambigu-
ous as the parameters used in the models are difficult to
measure directly. Such a situation calls for a study of the
simplest model that captures only the vital features of the
network evolution and involves the minimal number of pa-
rameters.

We shall investigate the totally asymmetric model of du-
plication and divergence network growth involving only one
parameter—the link retention probabilitys. The model is
defined as followssFig. 1d.

s1d Duplication. A randomly chosen target node is dupli-
cated, that is its replica is introduced and connected to each
neighbor of the target node.

s2d Divergence. Each link emanating from the replica is
activated withretentionprobability s sthis mimics link dis-
appearance during divergenced. If at least one link is estab-
lished, the replica is preserved; otherwise the attempt is con-
sidered as a failure and the network does not change.fThe
probability of the failure iss1−sdk if the degree of the target
node is equal tok.g

As in the observed protein-protein interaction networks,
in this model each node has at least one link and the network
remains connected throughout the evolution. These features
are the main distinction between our model and earlier mod-
els ssee, e.g.f7,8gd which allowed an addition of nodes with
no links and generated disconnected networks whose bio-
logical relevance is questionable. The simplest argument for
the absence of disconnected components in protein-protein
interaction networks is the existence of several ubiquitous
biological pathways that are universal for all proteinsssuch

as degradation, heat-shock, phosphorylation, dephosphoryla-
tion, glycosylation, cleavage, targeted transport to subcellu-
lar compartment, etc.d. These processes are run by a few
“housekeeping” proteins that correspond to high-degree hubs
in the network and in principle must have physical links to
all proteins present in a species. Several small disconnected
components, observed in experiments, most probably owe
their existence to the incompleteness of our knowledge about
the protein-protein interaction networks.

FIG. 2. sColor onlined Degree distribution of the protein-protein
binding networks of the following.sAd Yeast withNp=4873 pro-
teins and average degreekdl<6.6. The link retention probability of
the fitted simulated networks<0.413. sBd Fruit fly with Np

=6954 proteins and average degreekdl<5.9. The link retention
probability of the fitted simulated networks<0.380. sCd Human
with Np=5275 proteins and average degreekdl<5.7. The link re-
tention probability of the fitted simulated networks<0.375.
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Another difference between our model and many existing
ones is that we do not take into account a process which is
often called mutations in the network literature, i.e. possible
appearance of new or reconnection of the existing links. The
rate at which the links are lost is much higher than the rate at
which the new links are acquired. The protein-protein inter-
actions are highly specific: While a substitution of one or
several amino acids often leads to a change of confirmation
and subsequent loss of an affinity for a certain interaction,
the probability that such substitution creates a protein that
fits the binding domains of one of the existing proteinssand
therefore establishes a linkd is very low. Those few connec-
tions that can possibly formde novodo not contribute much
to the “bulk” quantities that we focus on, such as the total
number of links and degree distribution. Yet introduction of
the noninherited links at least doubles the number of param-
eters and makes the model significantly less tractable.

The above simple rules generate networks which are strik-
ingly similar to the naturally occurring ones. This is evident
from Fig. 2 which compare the degree distribution of the
simulated networks and protein-protein binding networks of
baker yeast, fruit fly, and human. The protein interaction data
for all three species were obtained from the Biological As-
sociation Network databases available from Ariadne Genom-
ics f16g. The data for humansH. sapiensd protein network
was derived from the Ariadne Genomics ResNet database
constructed from the various literature sources using Med-
scanf17g. The data for baker yeastsS. cerevisiaed and fruit
fly sD. melanogasterd networks were constructed by combin-
ing the data from published high-throughout experiments
with the literature data obtained using Medscan as wellf18g.

Each simulated degree distribution was obtained by aver-
aging over 500 realizations. The values of the link retention
probability s of simulated networks were selected to make
the mean degreekdl of the simulated and observed networks
equal. The number of nodes and the number of links in the
corresponding grown and observed networks were therefore
equal as well.

Figure 2sAd–sCd demonstrate that even the most primitive
form of the duplication and divergence modelswhich does
not account for disappearance of links from the original
node, introduction of new links, removal of nodes, and many
other biologically relevant processesd reproduces the ob-

served degree distributions rather well. These figures also
show that the degree distributions of both simulated and
naturally occurring networks are not exactly resembling
power-laws that they are commonly fitted tossee, for ex-
ample,f5gd. A possible explanation is that the protein-protein
networkssnaturally limited to tens of thousands of nodesd are
not large enough for a degree distribution to converge to its
power-law asymptotics. To probe the validity of this argu-
ment we presentsFig. 3d the degree distributions for net-
works of up to 106 nodes with link retention probabilitys
=0.45. It follows that a degree distribution does not attain a
power-law form even for very large networks, at least for
naturally occurrings<0.4.

III. SOLVABLE LIMITS

Here we analyze duplication-divergence networks in the
limits s=1 ands→0 when the model is solvable andsal-
mostd everything can be computed analytically.

A. No divergence„s=1…

This case has already been investigated in Refs.f8,9,19g.
Here we outline its properties as it will help us to pose rel-
evant questions in the general case when a divergence is
present.

We assume that the initial network consists of two con-
nected nodes. Whens=1, each duplication attempt is suc-
cessful and the network remains a complete bipartite graph
throughout the evolution.sA bipartite graph admits a parti-
tion into two disjoint sets of nodes with linksonly between
nodes from different sets; if there aren andm nodes in two
sets and each node from one set is linked to each node from
the other set, the graph is called complete bipartite and de-
notedKn,m.d The initial network isK1,1; at the next stage it
turns intoK2,1 or K1,2, equiprobably; and generally when the
number of nodes reachesN, the network is the complete
bipartite graphKj ,N−j with every valuej =1,… ,N−1 occur-
ring equiprobably. In the complete bipartite graphKj ,N−j the
degree of a node has one of the two possible values:j and
N− j . Hence in any realization of as=1 network, the degree
distribution is the sum of two delta functions:Nks jd= jdk,N−j

+sN− jddk,j. Averaging over all realizations we obtain

kNkl =
1

N − 1o
j=1

N−1

Nks jd =
2sN − kd

N − 1
. s1d

The total number of linksL in the complete graphKj ,N−j is
L= jsN− jd. Averaging over allj we can compute any mo-
ment kLpl; for instance, the meanL is equal to

kLl =
1

N − 1o
j=1

N−1

jsN − jd =
NsN + 1d

6
s2d

and the mean square is given by

kL2l =
NsN + 1dsN2 + 1d

30
. s3d

In the thermodynamic limitN→` ,L→`, the link distri-
bution PNsLd becomes a function of the single scaling vari-
able,=L /N2, namely

FIG. 3. sColor onlined Degree distributions of grown networks
with sbottom to topd 104,105, and 106 vertices. The link retention
probability s=0.45, all data was averaged over 100 realizations.
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PNsLd =
1

N − 1o
j=1

N−1

dL,jsN−jd → N−2Ps,d, s4d

with Ps,d=2/Î1−4,. The key feature of the networks gen-
erated without divergencess=1d is the lack of self-
averaging. In other words, fluctuations do not vanish in the
thermodynamic limit. This is evident from Eqs.s2d–s4d: In
the self-averaging case we would have hadkL2l / kLl2=1 sin-
stead of the actual valuekL2l / kLl2=6/5d and the scaling
function Ps,d would be the delta function. The lack of self-
averaging implies that the future is uncertain—a few first
steps of the evolution drastically affect the outcome.

Interestingly, thes=1 limit of our model is equivalent to
the classical Pólya’s urn modelf20g. The urn models have
been studied in the probability theoryf21g, have applications
ranging from biologyf22g to computer sciencef23,24g, and
remain in the focus of the current researchssee, e.g.f25,26g
and references thereind.

B. Maximal divergence „s= +0…

Let s!1. Then in a successful duplication attempt, the
probability of retaining more than one link is very smallsof
the order ofsd. Ignoring it, we conclude that in each suc-
cessful duplication event, one node and only one link are
added and fors!1 the emerging networks are trees.

If the degree of the target node isk, the probability of the
successful duplication is 1−s1−sdk which approachessk
whens!1. Hence any of thek neighbors of the target node
will be linked to the potentially duplicated node with the
same probabilitys.

A given noden links to the new, duplicated, node in a
process which starts with choosing a neighbor ofn as the
target node. The probability of that is proportional to the
degreedn of the noden. Then the probability of linking to
the noden is s sas we already establishedd so the probability
that the new node links ton is proportional to its degreedn.
Thus we recover the standard preferential attachment model
f27g. This model exhibits the well-known behavior: The total
number of links isL=N−1, and the degree distribution is a
self-averaging quantity peaked around the average,

Nk =
4N

ksk + 1dsk + 2d
. s5d

IV. GENERAL CASE „0,s,1…

We now move on to the discussion of the general case
which is only partially understood.

A. Self-averaging

Self-averaging of any quantity can be probed by analyz-
ing a relative magnitude of fluctuations of that quantity. As a
quantitative measure we shall use the ratio of the standard
deviation to the average. For the total number of links,

x =
ÎkL2l − kLl2

kLl
, s6d

should vanish in the thermodynamic limit if the total number
of links is the self-averaging quantity. Even ifx vanishes in
the thermodynamic limit, fluctuations may still play notice-
able role ifx approaches zero too slowly.

SimulationssFig. 4d show that the system is apparently
self-averaging whensø1/2. It is somewhat difficult to es-
tablish what is happening in the borderline cases=1/2,
though we are inclined to believe that self-averaging still
holds. The self-averaging is evidently lost ats=3/4, and the
system is certainlyf non-self-averaging fors=1 fin this situ-
ation x=1/Î5, see Eqs.s2d and s3dg. These findings suggest
that in the range 1/2,sø1 the total number of links isnot
a self-averaging quantity.

B. Total number of links

According to the definition of the model, a target node is
chosen randomly. Therefore, the probability that a duplica-
tion event is successful, or equivalently, the average incre-
ment of the number of nodes per attempt is

DN ; n = o
kù1

nkf1 − s1 − sdkg, s7d

wherenk=Nk/N is a probability for a node to have a degree
k. Similarly the increment of the number of links per step is

DL = o
kù1

nkks

and therefore

dL

dN
=

o
kù1

nkks

o
kù1

nkf1 − s1 − sdkg
. s8d

The inequality ks.1−s1−sdk is valid for all k.1 and
thereforedL/dNù1 implying

FIG. 4. sColor onlined x vs N for stop to bottomd s
=3/4,1/2,1/4. Thetotal number of nodes is obviously a self-
averaging quantity fors=1/4, apparently also self-averaging for
s=1/2, andevidently non-self-averaging fors=3/4.
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L ù N − 1. s9d

This is obvious geometrically ass9d should hold for any
connected network.

Using Eq. s8d we can verify the self-consistency of our
conclusions5d derived in the case ofs= +0. Substitutings5d
in s8d we obtain

dL

dN
= 1 +ss− ln s − 1d + Ofss ln sd2g. s10d

It confirms our assumption that for vanishings, each suc-
cessful duplication event increments the number of links by
one.

To analyze the growth ofL versusN, we use the definition
s7d of n, an identity 2L=okNk, and rewrites8d as

dL

dN
=

2s

n

L

N
, s11d

which leads to an algebraic growthL,N2s/n. Noting thatn
cannot exceed onefthis follows from s7d and the sum rule
onk=1g we conclude that growth is certainly superlinear
when s.1/2. Hence the average degreekdl=okù1knk

=2L /N diverges with system size algebraically,kdl,Na

with a=2s /n−1.0. Since the average degree grows indefi-
nitely, the probability of the failure to inherit at least one link
approaches zero, that isn→1 asN→`. Therefore we antici-
pate that asymptoticallyL,N2s and kdl,Na with a=2s
−1.0. These expectations agree with simulations fairly well
sFig. 5d. For instance whens=3/4, thepredicted exponent
a=1/2 isclose to the fitted one,a=0.51sFig. 5d. The agree-
ment is worse whens approachess=1/2; thepredicted ex-
ponent for s=5/8 a=1/4 is notably smaller thananumer
<0.3 observed in the simulations.

In the rangesø1/2, we cannot establish on the basis of
Eq. s11d alone whether the growth is superlinear or linear
fthe growth is at least linear as it follows from the lower
bounds9dg. The average node degreekdl grows with N but
apparently saturates whens is close to zerossee Fig. 6d. For
s<0.3−0.4 the average degree seems to grow logarithmi-

cally, that isLsNd,N ln N. For s=1/2 thegrowth of kdl is
superlogarithmicalssee Fig. 6d and can be fitted both by
kdl,sln Ndb with b<2, or by a power lawkdl,Na with a
fairly small exponentas1/2d<0.16.

Hence, taking into account the simulation results and lim-
iting cases considered earlier, the behavior ofL can be sum-
marized as follows:

L , 5N2s for 1/2, s ø 1,

N ln N for s* ø s , 1/2,

N for 0 , s , s* .
6 s12d

Numerically it appears thats* <0.3–0.4. In the next subsec-
tion we will demonstrate thats* =e−1=0.367879… .

C. Degree distribution

A rate equation for the degree distribution is derived in
the same manner as Eq.s8d sseef8g for more details of a
similar derivationd:

n
dNk

dN
= sfsk − 1dnk−1 − knkg + mk. s13d

Here we have used the shorthand notation

mk = o
sùk

nsSs

k
Dsks1 − sds−k s14d

for the probability that the new node acquires a degreek. The
general term in the sum on the right-hand side of Eq.s14d
describes a duplication event in whichk links remain ands
−k links are lost due to divergence.

Summing both sides ofs13d over allkù1 we obtainn on
the left-hand side. On the right-hand side, only the second
term contributes to the sum and also gives the samen:

o
kù1

mk = o
sù1

nso
k=1

s Ss

k
Dsks1 − sds−k = o

sù1
nsf1 − s1 − sdsg = n,

where the second line was derived using the binomial iden-
tity. Similarly, multiplying s13d by k and summing over all

FIG. 5. sColor onlined The average node degreekdl vs N for
sbottom to top, dashed linesd s=1/2,5/8,3/4.Solid lines are cor-
responding power-lawkdl,Na best fits for the largeN parts of the
plots: ass=1/2d<0.16,ass=5/8d<0.30, andass=3/4d<0.51.
The results are averaged over 100 network realizations.

FIG. 6. sColor onlined The average node degreekdl vs N in the
self-averaging regime.s=1/16,1/8,1/4,3/8,0.45,1/2 sbottom to
topd. The results are averaged over 100 network realizations.
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kù1 we recovers11d. These two checks show consistency of
s13d with the growth equations, introduced earlier.

Sincen depends on allnk, sees7d, Eqs.s13d are nonlinear.
However, the observations made in the previous subsection
allow us to approximate, for any givens ,n as parameter,
thus ignoring its possible very slow dependence onN. Re-
sulting linear Eqs.s13d are still very complicated: If we as-
sume thatk@1 and employ the continuous approach, we still
are left with a system of partial differential equations with a
nonlocal “source” termmk. Fortunately, the summand inmk,
that is gss,kd=sk

sdsks1−sds−k, is sharply peaked arounds
<k/s f8g. Hence we can replaceosùknsgss,kd by
nk/sosùkgss,kd;s−1nk/s f28g, and Eqs.s13d become

n N
]

]N
Nk + s

]

]k
kNk = s−1Nk/s. s15d

Still, the analysis ofs15d is hardly possible without know-
ing the correct scaling. Figure 7 indicates that the form of the
degree distribution varies withs significantly. We will pro-
ceedsseparately for 0,s,1/2 and 1/2,s,1d by guess-
ing the scaling and trying to justify the consistency of the
guess.

1. 0,s,1/2

Assumingthe simplest linear scalingNk,N we reduce
Eq. s15d to

2nk +
d

dk
knk = s−2nk/s. s16d

We also usedn=2s, which is required to assure thatL,N
f29g is consistent withs11d. Pluggingnk,k−g into s16d we
obtain

g = 3 −sg−2. s17d

This equation has two solutions:g=2 and a nontrivial solu-
tion gssd which depends ons. The second solutiongssd
decreases fromgs0d=3 to gs1/2d=1. The two solutions co-
incide ats* =e−1=0.367879. The sumoknk converges when
g.2, and the total number of links grows linearly,L,N.

Apparently the appropriate solution is the one which is
larger: Fors,e−1 the exponent isgssd, while for s.e−1

the exponent isg=2, Fig. 8. In the latter case,

o
k,kmax

knk , o
k,kmax

k−1 , ln kmax, ln N

and therefore the total number of links grows asN ln N.
Simulations show that for smalls the degree distribution

nk has indeed a fat tailssee Fig. 9d. The agreement with the
theoretical prediction of the algebraic tail is very good when
s=1/8 fEq. s17d gives g=2.817187 while numerically
gnumer<2.82g, not so good whens=1/4 sg=5/2 vs.gnumer
<2.7d, and fair at best fors=3/8.

Thus we explained the growth laws12d. We also arrived
at the theoretical prediction ofs* which reasonably well
agree with simulation results. Due to the presence of loga-
rithms, the convergence is extremely slow and better agree-
ment will be probably very hard to achieve. Finally we note
that the behaviorsL,N ln N andnk,k−2 arise in a surpris-
ingly large number of technological and social networksssee
f30g and references thereind.

FIG. 7. sColor onlined The degree distributionnk vs k for sbot-
tom to to topd s=1/4,s=1/2, ands=3/4. Thesize of the network
is N=105 for s=1/4,N=53104 for s=1/2, andN=104 for s
=3/4. Theresults are averaged over 100 realizations.

FIG. 8. The degree distribution exponentgssd from Eq.s17d.

FIG. 9. sColor onlined nk vs k for the network of sizeN=105 in
the self-averaging regime.s= +0,1/8,1/4,3/8,0.45 sbottom to
topd. The result fors= +0 is the exact solutions5d, simulation data
is averaged over 100 realizations. The corresponding analytical pre-
dictions for the exponent aregss=1/8d=2.817187,gss=1/4d
=5/2, andgss=3/8d=gss=0.45d=2.
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2. 1/2,s,1

The growth laws12d suggests an introduction of a scaling
form Nk=N2−2sFsxd with x=k/N2s−1. Then the sum rules
oNk=N and okNk,N2s are manifestly satisfiedfprovided
that the scaling functionFsxd falls off reasonably fast forx
→`g. Simulation resultsssee Fig. 10d are in a good agree-
ment with above scaling form.

V. CONCLUSIONS

We have shown that a simple one-parameter duplication-
divergence network growth model well approximates the de-
gree distribution of realistic protein-protein networks. Table I
summarizes how the major network featuresfself-averaging,
evolution of the number of linksLsNd, the degree distribu-
tion nkg change when the link retention probabilitys varies.

The two most striking features of duplication-divergence
networks are the lack of self-averaging fors.1/2 and ex-
tremely slow growth of the average degree fors,1/2.
These features have very important biological implications:
The lack of self-averaging naturally leads to a diversity be-
tween the grown networks and the slow degree growth pre-
serves the sparse structure of the network. Both of these
effects occur in wide ranges of parameters and therefore are
robust—it is hard to expect that nature would have been able
to fine-tune the value ofs if it were not so.

Our findings indicate that in the observed protein-protein
networkss<0.4, so biologically-relevant networks seem to
be in the self-averaging regime. One must, however, take the

experimental protein-protein data with a great degree of cau-
tion: It is generally acknowledged that our understanding of
protein-protein networks is quite incompletessee Fig. 11d.
Usually, as the new experimental data becomes available, the
number of links and the average degree in these network
increases. Hence the currently observed degree distributions
may reflect not any intrinsic property of protein-protein net-
works, but a measure of an incompleteness of our knowledge
about them. Therefore a possibility that the real protein-
protein networks are notsor have not been at some stage of
the evolutiond self-averaging is not excluded.

It has been suggested that randomly introduced linkssmu-
tationsd must complement the inherited ones to ensure the
self-averaging and existence of smooth degree distribution
f7,8g. While a lack of random linking does affect the topo-
logical structure of the resulting network, we have observed
that the features that are strongly dependent on the link num-
ber like the self-averaging, growth law, and degree distribu-
tion are rather insensitive to whether random links are intro-
duced or not. This is so because usually the number of
random links is significantly less than the number of inher-
ited ones. We performed a number of simulation runs where
links between a target node and its image were added at each
duplication step with a probabilityPd. Introduction of such
links is the most direct way to prevent partitioning of the
network into a bipartite graphsseef8gd. In other words, with-
out such links the target and duplicated nodes are never di-

FIG. 11. sColor onlined Using a multitude of direct and indirect
methods, von Meringet al. f31g predicted 78928 links between
5397 yeast proteins which produces a network with the average
degreekdl<29.2. A power-law fit to this degree distribution has the
exponentg<1.1.

FIG. 10. sColor onlined Scaling of the degree distribution in the
networks ofN=100,N=1000, andN=10000 nodes withs=3/4.

TABLE I. The behavior of the duplication-divergence network for different values of probability to inherit
a link s. HereLsNd is the average number of links for a given number of nodesN,nk is the average fraction
of nodes of degreek, and the exponentgssd.2 is defined by equationg=3−sg−2.

s Self-averaging LsNd nk

s=1 No NsN+1d /6 2sN−kd / fNsN−1dg
1/2,s,1 No ,N2s−1 ,N1−2sFsk/N2s−1d

e−1,s,1/2 Yes ,N ln N probably,k−2

0,s,e−1 Yes ,N ,k−gssd

s= +0 Yes N−1 4/fksk+1dsk+2dg
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rectly connected to each other. We observed that for reason-
able values ofPd,0.1 sin the observed yeast, fly, and human
protein-protein networksPd never exceeds this valued the
results reported here remain unaffected. Apparently, without
randomly introduced links, the network characteristics estab-
lish themselves independently in every subset of vertices du-
plicated from each originally existing node. We leave more
systematic study of the effects of noninherited links as well
as of the more symmetric divergence scenariosswhen links
may be lost both on the target and duplicated noded for the
future f32g.

Many unanswered questions remain even in the realm of
the present model. For instance, little is known about the

behavior of the system in the borderline cases ofs=1/2 and
s=e−1. One also wants to understand better the tail of the
degree distribution in the regionsùe−1 whereLsNd follows
unusual scaling laws. It will be also interesting to study pos-
sible implications of these results for the probabilistic urn
modelsf21g.
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