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Duplication-divergence model of protein interaction network
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We investigate a very simple model describing the evolution of protein-protein interaction networks via
duplication and divergence. The model exhibits a remarkably rich behavior depending on a single parameter,
the probability to retain a duplicated link during divergence. When this parameter is large, the network growth
is not self-averaging and an average node degree increases algebraically. The lack of self-averaging results in
a great diversity of networks grown out of the same initial condition. When less than a half of linksnare
average preserved after divergence, the growth is self-averaging, the average degree increases very slowly or
tends to a constant, and a degree distribution has a power-law tail. The predicted degree distributions are in a
very good agreement with the distributions observed in real protein networks.
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I. INTRODUCTION cated noddas in Fig. 1, it was found[7-10] that the emerg-
) o ) ing degree distribution has a power-law tail;~k™” for k

A single- and multi gene duplication plays a crucial role 7 vet apart from the shape of the degree distribution, a
in evolution[1-4]. On the proteomics level, the gene dupli- number of other perhaps even more fundamental properties
cation leads to a creation of new proteins that are initiallyof duplication-divergence networks remain unclear.
identical to the original ones. In a course of subsequent evo- (1) How well does the model describe its natural proto-
lution, the majority of these new proteins are lost as reduntype, the protein-protein networks ?
dant, while some of them survive by diverging, i.e., quickly  (2) Is the total number of links a self-averaging quantity ?
losing old and possibly slowly acquiring new functions. (3) How does the average total number of links depend

The protein-protein interaction network is commonly de-on the network sizé\ ?
fined as an evolving graph with nodes and links correspond- (4) Does the degree distribution scale linearly wit?
ing to proteins and their interactions. Thus a successful nontrivial answer to any of these questions would be more
single-gene duplication event results in a creation of a nevimportant than details of the tail of the degree distribution.
node which is initially linked to all the neighbors of the  Here we seek answers to above questions and we also
original node. Later, some links between each of the dupliiook again at the degree distribution of the duplication-
cates and their neighbors disappéaig. 1). Such a network divergence networks. We examine a simple scenario of to-
evolution process is called duplication and diverge@;8].  tally asymmetric divergence, where the evolution is charac-
Duplication and divergence is usually considered as the kejerized by a single parameter, the link retention probability
growth mechanism for protein-protein networks, and it alsog. It turns out that even such an idealized model well de-
plays a role in creation of new nodes and links in the worldscribes the degree distribution found in the biological
wide web, growth of various networks of human contacts byprotein-protein networks. We find that depending @nthe
introduction of close acquaintances of existing members, anbdehavior of the system is extremely diverse: When more than
evolution of many other nonbiological networks.

Does the evolution dominated by duplication and diver-
gence define the structure and other properties of a network?
So far, most of the attention has been attracted to the study of
the degree distributiom, defined as the fraction of nodes
with k links. Wagner{5] has provided a numerical evidence
that duplication-divergence evolution does not noticeably al-
ter the initial power-law degree distribution, provided that
the evolution is initiated with a fairly large network. In a
somewhat idealized case of the completely asymmetric di-
vergencd5,6] when links are removed only from the dupli-
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a half of links are(on averagg preserved, the network 10
growth is non-self-averaging, the average degree diverges . A
with the network size, and while a degree distribution has a S,
scaling form, it does not resemble any power law. In a com- 2 G’%@m
plimentary case of smalr the growth is self-averaging, the &
average degree tends to a constant, and a degree distribution » &
approaches a scaling power-law form. "%
In the next section we formally define the model and com- 10" ¥\
pare the simulated degree distribution to the observed ones. Ooo;;
The properties of the model are first analyzed in the tractable oy
o=1 ando— +0 limits (Sec. Il and then in the general ‘ ‘
case Ko <1 (Sec. IV). Section V gives conclusions. 1 10 100 1000

II. DUPLICATION AND DIVERGENCE 10°

A number of the duplication-divergence models describ- °
ing the evolution of protein interaction networks have been
recently investigated. Asymmetric models assume that rep- 10
lica proteins carry some but generally not all of the interac-
tion links of the target proteins from which they sprouted =
[7-9], while in symmetric models both replica and target
proteins can lose the interaction linkkl,12. Some models I o
also take into account the appearance of interactions %o ™,
[7,8,13—15 between new proteins and already existing ones, oMy
or specifically between the replica and the target proteins 10 '
[12]. Despite their complexity, many of these models leave
aside certain subtle details of biological evolution underlying
actual duplication and divergence. Yet these models are usu- 10° : :
ally analytically intractable and are not fully understood. C
Furthermore, the comparison with available data is ambigu- S
ous as the parameters used in the models are difficult to S,
measure directly. Such a situation calls for a study of the 10+
simplest model that captures only the vital features of the o
network evolution and involves the minimal number of pa- o
rameters. 0t - Py

We shall investigate the totally asymmetric model of du- o,
plication and divergence network growth involving only one
parameter—the link retention probability. The model is
defined as followsFig. 1). _ _ 107 10 100 1000

(1) Duplication. A randomly chosen target node is dupli- K
cated, that is its replica is introduced and connected to each
neighbor of the target node. FIG. 2. (Color onling Degree distribution of the protein-protein

(2) Divergence Each link emanating from the replica is binding networks of the following(A) Yeast with N,=4873 pro-
activated withretentionprobability o (this mimics link dis-  teins and average degré®~6.6. The link retention probability of
appearance during divergencé at least one link is estab- the fitted simulated networlr~0.413. (B) Fruit fly with N,
lished, the replica is preserved; otherwise the attempt is cor=6954 proteins and average degreh~5.9. The link retention
sidered as a failure and the network does not chajgee pr_obablllty of the fltt_ed simulated networdk= 0.380. (C) Human
probability of the failure i1 -o)¥ if the degree of the target With Np=5275 proteins and average degrelp~5.7. The link re-
node is equal td.] tention probability of the fitted simulated netwook= 0.375.

As in the observed protein-protein interaction networks,
in this model each node has at least one link and the networéts degradation, heat-shock, phosphorylation, dephosphoryla-
remains connected throughout the evolution. These featuramn, glycosylation, cleavage, targeted transport to subcellu-
are the main distinction between our model and earlier modiar compartment, etg. These processes are run by a few
els (see, e.g[7,8]) which allowed an addition of nodes with “housekeeping” proteins that correspond to high-degree hubs
no links and generated disconnected networks whose bidn the network and in principle must have physical links to
logical relevance is questionable. The simplest argument foall proteins present in a species. Several small disconnected
the absence of disconnected components in protein-proteitomponents, observed in experiments, most probably owe
interaction networks is the existence of several ubiquitousheir existence to the incompleteness of our knowledge about
biological pathways that are universal for all prote{sach  the protein-protein interaction networks.

1 10 100 1000
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served degree distributions rather well. These figures also
show that the degree distributions of both simulated and
naturally occurring networks are not exactly resembling
power-laws that they are commonly fitted tsee, for ex-
ample,[5]). A possible explanation is that the protein-protein
networks(naturally limited to tens of thousands of noflase
not large enough for a degree distribution to converge to its
power-law asymptotics. To probe the validity of this argu-
ment we presenfFig. 3) the degree distributions for net-
works of up to 16 nodes with link retention probability:
L 10 100 1000 - =0.45. It follows that a degree distribution does not attain a
X power-law form even for very large networks, at least for
naturally occurringr=0.4.

FIG. 3. (Color onling Degree distributions of grown networks
with (bottom to top 10%,1C°, and 16 vertices. The link retention ll. SOLVABLE LIMITS

probability =0.45, all data was averaged over 100 realizations. Here we analyze duplication-divergence networks in the

Another difference between our model and many existindMits =1 ando—0 when the model is solvable artell-
ones is that we do not take into account a process which i§10sh everything can be computed analytically.
often called mutations in the network literature, i.e. possible
appearance of new or reconnection of the existing links. The
rate at which the links are lost is much higher than the rate at This case has already been investigated in H&{9,19.
which the new links are acquired. The protein-protein inter-Here we outline its properties as it will help us to pose rel-
actions are highly specific: While a substitution of one orevant questions in the general case when a divergence is
several amino acids often leads to a change of confirmatiopresent.
and subsequent loss of an affinity for a certain interaction, We assume that the initial network consists of two con-
the probability that such substitution creates a protein thanected nodes. Whea=1, each duplication attempt is suc-
fits the binding domains of one of the existing protejand  cessful and the network remains a complete bipartite graph
therefore establishes a links very low. Those few connec- throughout the evolution(A bipartite graph admits a parti-
tions that can possibly forrde novodo not contribute much tion into two disjoint sets of nodes with linksnly between
to the “bulk” quantities that we focus on, such as the totalnodes from different sets; if there aneandm nodes in two
number of links and degree distribution. Yet introduction ofsets and each node from one set is linked to each node from
the noninherited links at least doubles the number of paranthe other set, the graph is called complete bipartite and de-
eters and makes the model significantly less tractable. notedK, ) The initial network isK, ;; at the next stage it
The above simple rules generate networks which are strikiurns intoK, ; or K, ,, equiprobably; and generally when the
ingly similar to the naturally occurring ones. This is evidentnumber of nodes reachds, the network is the complete
from Fig. 2 which compare the degree distribution of thebipartite graphK; y_; with every valuej=1,...,N-1 occur-
simulated networks and protein-protein binding networks ofring equiprobably. In the complete bipartite grai§fy-; the
baker yeast, fruit fly, and human. The protein interaction datalegree of a node has one of the two possible valpesid
for all three species were obtained from the Biological As-N—j. Hence in any realization of @=1 network, the degree
sociation Network databases available from Ariadne Genomdistribution is the sum of two delta functioni(j) =j & n-;
ics [16]. The data for humariH. sapien$ protein network  +(N-j)d;. Averaging over all realizations we obtain
was derived from the Ariadne Genomics ResNet database N-1
constructed from the various literature sources using Med- (NY = LE Ni(j) = 2(N-Kk) 0
scan[17]. The data for baker yea¢8. cerevisia¢ and fruit MTN-1 1 i N-1 "~
fly (D. melanogasternetworks were constructed by combin-
ing the data from published high-throughout experimentslhe total number of linkd. in the complete grapK; y-; is
with the literature data obtained using Medscan as ).  L=j(N—j). Averaging over allj we can compute any mo-
Each simulated degree distribution was obtained by averment(LP); for instance, the meah is equal to
aging over 500 realizations. The values of the link retention N-1
probability o of simulated networks were selected to make (L) = LE i(N=j) = N(N+1) (2)
the mean degre@l) of the simulated and observed networks N-1i5 6
equal. The number of nodes and the number of links in the
corresponding grown and observed networks were thereford"
equal as well. o N(N+ 1)(N?+ 1)
Figure ZA)—(C) demonstrate that even the most primitive (LH= 30 3
form of the duplication and divergence modethich does
not account for disappearance of links from the original In the thermodynamic limiN—oo,L — o, the link distri-
node, introduction of new links, removal of nodes, and manybution Py(L) becomes a function of the single scaling vari-
other biologically relevant processeseproduces the ob- able¢=L/N? namely

A. No divergence(o=1)

d the mean square is given by
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1 V! 0.4
Pn(L) = FLE SLjn-j — N2P(0), (4)
=

03t o
with P(€)=2/\1-4¢. The key feature of the networks gen- 0=3/4
erated without divergencdo=1) is the lack of self- R02 - gjﬁ
averaging. In other words, fluctuations do not vanish in the \\\\ -
thermodynamic limit. This is evident from Eq&)—(4): In L T
the self-averaging case we would have Kiag)/{L)?>=1 (in- oLy \'\'\\\\ T
stead of the actual valud_?)/(L)>=6/5) and the scaling T ]
function P(¢) would be the delta function. The lack of self- 0 : ‘ -

10 100 1000 10000 100000

averaging implies that the future is uncertain—a few first
steps of the evolution drastically affect the outcome.
Interestingly, theo=1 limit of our model is equivalent to FIG. 4. (Color onling xy vs N for (top to bottom o
the classical Pélya’s urn modgR0]. The urn models have =3/4,1/2,1/4. Thetotal number of nodes is obviously a self-
been studied in the probability thedi®1], have applications averaging quantity fow=1/4, apparently also self-averaging for
ranging from biology[22] to computer sciencf23,24), and  ¢=1/2, andevidently non-self-averaging far=3/4.
remain in the focus of the current reseatsbke, e.g[25,26|
and references thergin \W

(R

) o should vanish in the thermodynamic limit if the total number

Let o<1. Then in a successful duplication attempt, theof links is the self-averaging quantity. Evenifvanishes in
probability of retaining more than one link is very sm@f  the thermodynamic limit, fluctuations may still play notice-
the order ofo). Ignoring it, we conclude that in each suc- gpje role if y approaches zero too slowly.
cessful dup|icati0n event, On-e node and Only one link are S|mu|at|0ns(|:|g 4) show that the System is apparent'y
added and for<1 the emerging networks are trees. self-averaging whemr=<1/2. It is somewhat difficult to es-

If the degree of the target nodeksthe probability of the  taplish what is happening in the borderline casel/2,
successful duplication is 1(#-o)* which approachesrk  though we are inclined to believe that self-averaging still
wheno<1. Hence any of th& neighbors of the target node holds. The self-averaging is evidently lostat 3/4, and the
will be linked to the potentially duplicated node with the system is certainlyf non-self-averaging for 1 [in this situ-
same probabilityo. ation y=1/45, see Eqs(2) and(3)]. These findings suggest

A given noden links to the new, duplicated, node in a that in the range 1/2 o<1 the total number of links isot
process which starts with choosing a neighbomoés the 3 self-averaging quantity.
target node. The probability of that is proportional to the
degreed, of the noden. Then the probability of linking to
the noden is o (as we already establishesb the probability
that the new node links to is proportional to its degreé,. According to the definition of the model, a target node is
Thus we recover the standard preferential attachment modehosen randomly. Therefore, the probability that a duplica-
[27]. This model exhibits the well-known behavior: The total tion event is successful, or equivalently, the average incre-
number of links isL=N-1, and the degree distribution is a ment of the number of nodes per attempt is
self-averaging quantity peaked around the average,

(6)

B. Maximal divergence (o= +0)

B. Total number of links

AN=v= > nf1-(1-o0)\], (7)
AN k=1
N = kik+1)(k+2) ®) wheren,=N,/N is a probability for a node to have a degree
k. Similarly the increment of the number of links per step is
IV. GENERAL CASE (0< o<1) AL= gl nko
We now move on to the discussion of the general casgq therefore
which is only partially understood.
> nko
A. Self-averaging dr _ k=1 _ ®)
dN= > nf1-(1-0)4

Self-averaging of any quantity can be probed by analyz- 1
ing a relative magnitude of fluctuations of that quantity. As a
quantitative measure we shall use the ratio of the standar@ihe inequalityke>1-(1-0)* is valid for all k>1 and
deviation to the average. For the total number of links, thereforedL/dN= 1 implying
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100

<d>

10 ¢

FIG. 5. (Color online The average node degréd) vs N for
(bottom to top, dashed linggr=1/2,5/8,3/4.Solid lines are cor-
responding power-lawd) ~ N¢ best fits for the largél parts of the
plots: a(c=1/2)~0.16,0(0=5/8)=0.30, anda(0c=3/4)=0.51.
The results are averaged over 100 network realizations.

L=N-1. (9)

This is obvious geometrically af®) should hold for any
connected network.

Using Eq.(8) we can verify the self-consistency of our
conclusion(5) derived in the case af=+0. Substituting5)
in (8) we obtain

:—::I=l+(r(— Ino-1)+0[(coIn o)?].

It confirms our assumption that for vanishimg each suc-

(10)

cessful duplication event increments the number of links b))\l

one.
To analyze the growth df versusN, we use the definition
(7) of v, an identity 2 =3kN,, and rewrite(8) as

dL_20L
dN~ v N’
which leads to an algebraic growth~N27’*. Noting thatv
cannot exceed onghis follows from (7) and the sum rule
>n=1] we conclude that growth is certainly superlinear

when o>1/2. Hence the average degréd)=%,-.kn,
=2L/N diverges with system size algebraicalkd)~ N“

(11)

with a=20/v-1>0. Since the average degree grows indefi-

nitely, the probability of the failure to inherit at least one link
approaches zero, thatis— 1 asN— . Therefore we antici-
pate that asymptotically. ~ N2 and (d)~ N® with a=2c

PHYSICAL REVIEW E 71, 061911(2005
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<d>
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FIG. 6. (Color online The average node degréd vs N in the
self-averaging regimer=1/16,1/8,1/4,3/8].45,1/2 (bottom to
top). The results are averaged over 100 network realizations.

cally, that isL(N) ~NIn N. For 0=1/2 thegrowth of(d) is
superlogarithmicalisee Fig. & and can be fitted both by
(dy~ (In N)? with B~2, or by a power law(d)~ N® with a
fairly small exponeni(1/2)~=0.16.

Hence, taking into account the simulation results and lim-
iting cases considered earlier, the behaviot. afan be sum-
marized as follows:

N2 for 12<o<1,
L~iNInN for o <o<1/2, (12
N for 0<o<o.

umerically it appears that” ~0.3—-0.4. In the next subsec-

tion we will demonstrate that' =e™1=0.367879.. .

C. Degree distribution

A rate equation for the degree distribution is derived in
the same manner as E() (see[8] for more details of a
similar derivation:

dN,
11— = of (k= )Ny — k] + m.

13
N (13
Here we have used the shorthand notation
S K s-k
me= 2 nd o1 -0) (14)
s=k Kk

for the probability that the new node acquires a degrdéhe

-1>0. These expectations agree with simulations falrly We”genera| term in the sum on the right-hand side of E_ql)

(Fig. 5). For instance whewr=3/4, thepredicted exponent
a=1/2 isclose to the fitted oney=0.51(Fig. 5). The agree-
ment is worse whewr approaches=1/2; thepredicted ex-
ponent for c=5/8 @=1/4 is notably smaller thana, mer
~0.3 observed in the simulations.

In the rangeo<1/2, we cannot establish on the basis of
Eqg. (11) alone whether the growth is superlinear or linear
[the growth is at least linear as it follows from the lower
bound(9)]. The average node degréd) grows with N but
apparently saturates whenis close to zerdsee Fig. 6. For

describes a duplication event in whigHinks remain ands
—k links are lost due to divergence.
Summing both sides dfL3) over allk=1 we obtainy on

the left-hand side. On the right-hand side, only the second
term contributes to the sum and also gives the same

S

> me= 2 n2,

k=1 s=1 k=1

(i)frk(l —0) =2 n{1-(1-0)°]=v,

s=1

where the second line was derived using the binomial iden-

0~0.3-0.4 the average degree seems to grow logarithmitity. Similarly, multiplying (13) by k and summing over all
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FIG. 7. (Color online The degree distribution, vs k for (bot-
tom to to top o=1/4,0=1/2, ando=3/4. Thesize of the network
is N=1C° for o=1/4 N=5X10* for 0=1/2, andN=10" for o
=3/4. Theresults are averaged over 100 realizations.

k=1 we recovef1l). These two checks show consistency of

(13) with the growth equations, introduced earlier.
Sincev depends on alh, see(7), Egs.(13) are nonlinear.

PHYSICAL REVIEW E 71, 061911(2005

1.8 : : : :
0 01 02 03 04 05

o
FIG. 8. The degree distribution exponeyitr) from Eq.(17).
Apparently the appropriate solution is the one which is

larger: Foro<e™* the exponent isy(o), while for o>¢e™
the exponent igy=2, Fig. 8. In the latter case,

> kne~ 2 kK'~Inkp~InN

k<Kmax k<Kmax

However, the observations made in the previous subsection

allow us to approximate, for any givem,v as parameter,
thus ignoring its possible very slow dependenceNorRe-

sulting linear Eqs(13) are still very complicated: If we as-

and therefore the total number of links growsNam N.
Simulations show that for smadt the degree distribution
n, has indeed a fat tailsee Fig. 9. The agreement with the

sume thak>1 and employ the continuous approach, we stillipeqretical prediction of the algebraic tail is very good when
are left with a system of partial differential equations with a ;.—1,g [Eq. (17) gives y=2.817187 while numerically

nonlocal “source” termm,. Fortunately, the summand m,,
that is g(s,k)=(§)o"(1-0)%, is sharply peaked arounsl
~kl/o [8]. Hence we can replace, ng(s,k) by
Nuo>=kd(s,K) = oy, [28], and Eqs(13) become

d d
v N&—NNK +0—kN = 0 Ny, (15)

ak

Still, the analysis 0f15) is hardly possible without know-

YVoumer= 2.82), not so good whemwr=1/4 (y=5/2 VS. Ynumer
~2.7), and fair at best forr=3/8.

Thus we explained the growth lait?2). We also arrived
at the theoretical prediction of" which reasonably well
agree with simulation results. Due to the presence of loga-
rithms, the convergence is extremely slow and better agree-
ment will be probably very hard to achieve. Finally we note
that the behaviors ~NIn N andn,~ k™2 arise in a surpris-

ing the correct scaling. Figure 7 indicates that the form of thdNgly large number of technological and social netwaiisese

degree distribution varies withr significantly. We will pro-
ceed(separately for 8 o<1/2 and 1/ o<1) by guess-

ing the scaling and trying to justify the consistency of the

guess.
1.0<o0<1/2
Assumingthe simplest linear scalindl,~N we reduce

Eq. (15) to

d
2n,+ _knk: O'_anlu.. (16)

dk
We also usedr=20, which is required to assure that-N
[29] is consistent with(11). Pluggingn,~k™” into (16) we
obtain

y=3-0"72.

17)

This equation has two solutiong=2 and a nontrivial solu-
tion y(o) which depends orr. The second solution (o)
decreases fromy(0)=3 to y(1/2)=1. The two solutions co-
incide ato” =€71=0.367879. The surikn, converges when
y>2, and the total number of links grows linearly~ N.

[30] and references theregin

0

10

1 10 100
k

FIG. 9. (Color onling n, vs k for the network of sizéN\=1C in
the self-averaging regimesr=+0,1/8,1/4,3/80.45 (bottom to
top). The result foro=+0 is the exact solutiofb), simulation data
is averaged over 100 realizations. The corresponding analytical pre-
dictions for the exponent are(o=1/8)=2.817187y(c=1/4)
=5/2, andy(c=3/8)=y(0=0.45=2.
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FIG. 10. (Color onling Scaling of the degree distribution in the

networks ofN=100 N=1000, andN=10000 nodes witlr=3/4. FIG. 11. (Color onling Using a multitude of direct and indirect

methods, von Meringet al. [31] predicted 78928 links between
5397 yeast proteins which produces a network with the average
degreg(d)=29.2. A power-law fit to this degree distribution has the
The growth lam12) suggests an introduction of a scaling exponenty~1.1.
form N,=N?"2F(x) with x=k/N?°"1. Then the sum rules
SN=N and =kN,~ N2 are manifestly satisfie@provided
that the scaling functioifr(x) falls off reasonably fast foxk
—oo]. Simulation resultgsee Fig. 1D are in a good agree-
ment with above scaling form.

2.1/2<0<1

experimental protein-protein data with a great degree of cau-
tion: It is generally acknowledged that our understanding of
protein-protein networks is quite incompletsee Fig. 11
Usually, as the new experimental data becomes available, the
number of links and the average degree in these network
increases. Hence the currently observed degree distributions
may reflect not any intrinsic property of protein-protein net-
works, but a measure of an incompleteness of our knowledge
We have shown that a simple one-parameter duplicationabout them. Therefore a possibility that the real protein-
divergence network growth model well approximates the deprotein networks are ndgor have not been at some stage of
gree distribution of realistic protein-protein networks. Table Ithe evolution self-averaging is not excluded.
summarizes how the major network featufsslf-averaging, It has been suggested that randomly introduced links-
evolution of the number of link&(N), the degree distribu- tationg must complement the inherited ones to ensure the
tion n,] change when the link retention probabilityvaries.  self-averaging and existence of smooth degree distribution
The two most striking features of duplication-divergence[7,8]. While a lack of random linking does affect the topo-
networks are the lack of self-averaging fer>1/2 and ex- logical structure of the resulting network, we have observed
tremely slow growth of the average degree fox1/2. that the features that are strongly dependent on the link num-
These features have very important biological implicationsber like the self-averaging, growth law, and degree distribu-
The lack of self-averaging naturally leads to a diversity be-ion are rather insensitive to whether random links are intro-
tween the grown networks and the slow degree growth preduced or not. This is so because usually the number of
serves the sparse structure of the network. Both of theseandom links is significantly less than the number of inher-
effects occur in wide ranges of parameteand therefore are ited ones. We performed a number of simulation runs where
robust—it is hard to expect that nature would have been ablénks between a target node and its image were added at each
to fine-tune the value of if it were not so. duplication step with a probabilit?y. Introduction of such
Our findings indicate that in the observed protein-proteinlinks is the most direct way to prevent partitioning of the
networkso = 0.4, so biologically-relevant networks seem to network into a bipartite graptsee[8]). In other words, with-
be in the self-averaging regime. One must, however, take theut such links the target and duplicated nodes are never di-

V. CONCLUSIONS

TABLE I. The behavior of the duplication-divergence network for different values of probability to inherit
a link o. HereL(N) is the average number of links for a given number of nddgs, is the average fraction
of nodes of degrek, and the exponeny(s) > 2 is defined by equation=3-0""2

o Self-averaging L(N) N
o=1 No N(N+1)/6 2(N=K)/[N(N-1)]
1/2<o<1 No ~N2o-1 ~N=27F(k/N2o-1)
el<o<1/2 Yes ~NInN probably ~k2
0<o<et? Yes ~N ~k o)
o=+0 Yes N-1 4/[k(k+1)(k+2)]

061911-7



ISPOLATOV, KRAPIVSKY, AND YURYEV PHYSICAL REVIEW E 71, 061911(2005

rectly connected to each other. We observed that for reasoehavior of the system in the borderline casessfL/2 and
able values oPy< 0.1 (in the observed yeast, fly, and human o=e™1. One also wants to understand better the tail of the
protein-protein networksy never exceeds this valu¢he  degree distribution in the regiom= e * whereL(N) follows
results reported here remain unaffected. Apparently, withouinusual scaling laws. It will be also interesting to study pos-
randomly introduced links, the network characteristics estabsjple implications of these results for the probabilistic urn
lish themselves independently in every subset of vertices duyygdels[21].

plicated from each originally existing node. We leave more

systematic study of the effects of noninherited links as well

as of the more symmetric divergence scenafioisen links ACKNOWLEDGMENTS
may be lost both on the target and duplicated ndde the
future [32]. The authors are thankful to S. Maslov, S. Redner, and M.

Many unanswered questions remain even in the realm dfarttunen for stimulating discussions. This work was sup-
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